Optical Properties of Composites Based on Poly(o-phenylenediamine), Poly(vinylenefluoride) and Double-Wall Carbon Nanotubes

Int J Mol Sci. 2021 Jul 31;22(15):8260. doi: 10.3390/ijms22158260.

Abstract

In this work, synthesis and optical properties of a new composite based on poly(o-phenylenediamine) (POPD) fiber like structures, poly(vinylidene fluoride) (PVDF) spheres and double-walled carbon nanotubes (DWNTs) are reported. As increasing the PVDF weight in the mixture of the chemical polymerization reaction of o-phenylenediamine, the presence of the PVDF spheres onto the POPD fibers surface is highlighted by scanning electron microscopy (SEM). The down-shift of the Raman line from 1421 cm-1 to 1415 cm-1 proves the covalent functionalization of DWNTs with the POPD-PVDF blends. The changes in the absorbance of the IR bands peaked around 840, 881, 1240 and 1402 cm-1 indicate hindrance steric effects induced of DWNTs to the POPD fiber like structures and the PVDF spheres, as a consequence of the functionalization process of carbon nanotubes with macromolecular compounds. The presence of the PVDF spheres onto the POPD fiber like structures surface induces a POPD photoluminescence (PL) quenching process. An additional PL quenching process of the POPD-PVDF blends is reported to be induced in the presence of DWNTs. The studies of anisotropic PL highlight a change of the angle of the binding of the PVDF spheres onto the POPD fiber like structures surface from 50.2° to 38° when the carbon nanotubes concentration increases in the POPD-PVDF/DWNTs composites mass up to 2 wt.%.

Keywords: IR spectroscopy; Raman scattering; carbon nanotubes; photoluminescence; poly(o-phenylenediamine); poly(vinylidene fluoride).

MeSH terms

  • Anisotropy
  • Dimethylformamide / chemistry*
  • Nanocomposites / chemistry
  • Nanotubes, Carbon / chemistry*
  • Polyvinyls / chemistry*
  • Spectrum Analysis, Raman

Substances

  • Nanotubes, Carbon
  • Polyvinyls
  • polyvinylidene fluoride
  • Dimethylformamide