Axillary strategy decisions have become more complex and controversial in considering minimally traumatic therapy instead of sentinel lymph node biopsy, axillary lymph node dissection or regional nodal irradiation for people with breast cancer. The purpose of this study was to noninvasively predict sentinel lymph node (SLN) and non-sentinel lymph node (NSLN) status based on pre-operative sonographic and clinicopathologic features to determine optimal decisions regarding axillary therapy. In total, 701 patients with breast cancer from two independent centers were retrospectively analyzed. The SLN model (SLNM) for predicting SLN status and the NSLN model (NSLNM) for predicting NSLN status were trained based on a training set using the random-forest algorithm, and their performance was validated using an independent external test set. A receiver operating characteristic curve was drawn to obtain the area under the curve, which was used to assess performance. The area under the curve for the SLNM in the training and test, respectively, was 94.2% and 83.0%, and for the NSLNM, 99.5% and 92.7%. The SLNM and NSLNM accurately predicted that 61.46% (319/519) and 17.53% (91/519), respectively, of our participants were non-metastatic. The overall benefit of the three models was 78.99% in our participants. The two models for predicting SLN and NSLN status showed excellent application potential in optimizing axillary strategies.
Keywords: Breast cancer; Non-sentinel lymph node; Prediction; Sentinel lymph node; Ultrasound (US).
Copyright © 2021 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.