Large structural variations frequently occur in higher plants; however, the impact of such variations on plant diversification, adaptation and domestication remains elusive. Here, we mapped and characterised a reciprocal chromosomal translocation in soybeans and assessed its effects on diversification and adaptation of wild (Glycine soja) and semiwild (Glycine gracilis) soybeans, and domestication of cultivated soybean (Glycine max), by tracing the distribution of the translocation in the USDA Soybean Germplasm Collection and population genetics analysis. We demonstrate that the translocation occurred through CACTA transposon-mediated chromosomal breakage in wild soybean c. 0.34 Ma and is responsible for semisterility in translocation heterozygotes and reduces their reproductive fitness. The translocation has differentiated Continental (i.e. China and Russia) populations from Maritime (i.e. Korea and Japan) populations of G. soja and predominately adapted to cold and dry climates. Further analysis revealed that the divergence of G. max from G. soja predates the translocation event and that G. gracilis is an evolutionary intermediate between G. soja and G. max. Our results highlight the effects of a chromosome rearrangement on the processes leading to plant divergence and adaptation, and provides evidence that suggests G. gracilis, rather than G. soja, as the ancestor of cultivated soybean.
Keywords: adaptive evolution; ancestry; chromosomal translocation; domestication; soybeans.
© 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.