PSPP-1 was obtained from purple sweet potato, and the effects of PSPP-1 on the immune modulation on macrophage cells were investigated for the first time. PSPP-1 promoted RAW264.7 proliferation and increased the total cell percentage in DNA synthesis and mitosis phases, and the cell morphology changed in volume and appearance. Additionally, the RAW264.7 immune functions of phagocytic activity and nitric oxide, reactive oxygen species, and cytokine production were improved by PSPP-1. The western blot experiment showed that PSPP-1 could activate toll-like receptor 2 and toll-like receptor 4-mediated pathways, and the expressions of proteins in MyD88-dependent, mitogen-activated protein kinase (MAPK)-signaling, NF-κB-signaling, AP-1 signaling, and TRIF-dependent pathways were improved markedly. Molecular docking and Biolayer Interferometry study further indicated that PSPP-1 could recognize and bind TLR2 and TLR4 by targeting the binding sites with a strong affinity. It suggested that PSPP-1 could enhance immunity via TLR2- and TLR4-mediated pathways, and it could be explored as an immunomodulatory agent.
Keywords: biolayer interferometry; immunomodulatory activity; molecular docking; pathway; polysaccharide; purple sweet potato; toll-like receptor 2; toll-like receptor 4.