Introduction: Malnutrition in early life affects the growth and development of fetus and children, which has a long-term impact on adult health. Previous studies reveal a relationship between dietary omega-3 polyunsaturated fatty acid (n-3 PUFA) content, brain development, and the prevalence of neurodevelopmental disorders and inflammation. However, it is unclear about the effect of n-3 PUFA-deficiency in early life on the development of Parkinson's disease (PD) in old age, as well as the neuroprotective effect of DHA- and EPA-enriched phospholipids (DHA/EPA-PLs) supplemented in old age in long-term n-3 PUFA-deficient mice.
Methods and results: The PD mice induced by 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) in n-3 PUFA-adequate (N) and -deficient (DEF) group are supplemented with a DHA/EPA-PLs diet for 2 weeks (N+DPL, DEF+DPL). DHA/EPA-PLs supplementation significantly protects against MPTP-induced impairments. The DEF+DPL group shows poorer motor performance, the loss of dopaminergic neurons, mitochondrial dysfunction, and neurodevelopment delay than the N+DPL group, and still did not recover to the Control level.
Conclusions: Dietary n-3 PUFA-deficiency in early life exhibits more aggravated MPTP-induced neurotoxicity in old age, than DHA/EPA-PLs supplementation recovers brain DHA levels and exerts neuroprotective effects in old age in long-term n-3 PUFA-deficient mice, which might provide a potential dietary guidance.
Keywords: DHA- and EPA-enriched phospholipids; MPTP; N-3 PUFA-deficiency; Parkinson's disease; neurotoxicity.
© 2021 Wiley-VCH GmbH.