A Carbonylation Zeolite with Specific Nanosheet Structure for Efficient Catalysis

ACS Nano. 2021 Aug 24;15(8):13568-13578. doi: 10.1021/acsnano.1c04419. Epub 2021 Aug 11.

Abstract

Up to now, the member of zeolite family has expanded to more than 230. However, only little part of them have been reported as catalysts used in reactions. Discovering potential zeolites for reactions is significantly important, especially in industrial applications. A carbonylation zeolite catalyst Al-RUB-41 has special morphology and channel orientation. The 8-MR channel of Al-RUB-41 is just perpendicular to its thin sheet, making a very short mass-transfer distance along 8-MR. This specific nature endows Al-RUB-41 with efficient catalytic ability to dimethyl ether carbonylation reaction with beyond 95% methyl acetate selectivity. Compared with the most widely accepted carbonylation zeolite catalysts, Al-RUB-41 behaves a much better catalytic stability than H-MOR and a greatly enhanced catalytic activity than H-ZSM-35. A space-confined deactivation mechanism over Al-RUB-41 is proposed. By erasing the acid sites on outer surface, Al-RUB-41@SiO2 catalyst achieves a long-time and high-efficiency activity without any deactivation trend.

Keywords: carbonylation; catalysis; nanosheet; space-confined deactivation mechanism; zeolite.