The role of preoperative diffusion tensor imaging in predicting and improving functional outcome in pediatric patients undergoing epilepsy surgery: a systematic review

BJR Open. 2021 Jul 5;3(1):20200002. doi: 10.1259/bjro.20200002. eCollection 2021.

Abstract

Objective: Diffusion tensor imaging (DTI) is a useful neuroimaging technique for surgical planning in adult patients. However, no systematic review has been conducted to determine its utility for pre-operative analysis and planning of Pediatric Epilepsy surgery. We sought to determine the benefit of pre-operative DTI in predicting and improving neurological functional outcome after epilepsy surgery in children with intractable epilepsy.

Methods: A systematic review of articles in English using PubMed, EMBASE and Scopus databases, from inception to January 10, 2020 was conducted. All studies that used DTI as either predictor or direct influencer of functional neurological outcome (motor, sensory, language and/or visual) in pediatric epilepsy surgical candidates were included. Data extraction was performed by two blinded reviewers. Risk of bias of each study was determined using the QUADAS 2 Scoring System.

Results: 13 studies were included (6 case reports/series, 5 retrospective cohorts, and 2 prospective cohorts) with a total of 229 patients. Seven studies reported motor outcome; three reported motor outcome prediction with a sensitivity and specificity ranging from 80 to 85.7 and 69.6 to 100%, respectively; four studies reported visual outcome. In general, the use of DTI was associated with a high degree of favorable neurological outcomes after epilepsy surgery.

Conclusion: Multiple studies show that DTI helps to create a tailored plan that results in improved functional outcome. However, more studies are required in order to fully assess its utility in pediatric patients. This is a desirable field of study because DTI offers a non-invasive technique more suitable for children.

Advances in knowledge: This systematic review analyses, exclusively, studies of pediatric patients with drug-resistant epilepsy and provides an update of the evidence regarding the role of DTI, as part of the pre-operative armamentarium, in improving post-surgical neurological sequels and its potential for outcome prediction.