Among the diseases transmitted by vectors, there are those caused by viruses named arboviruses (arthropod-borne viruses). In past years, viruses transmitted by mosquitoes have been of relevance in global health, such as Chikungunya (CHIKV), Dengue (DENV), and Zika (ZIKV), which have Aedes aegypti as a common vector, thus raising the possibility of multi-infection. Previous reports have described the general structure of RNA-dependent RNA polymerases termed right-hand fold, which is conserved in positive single-stranded RNA viruses. Here, we report a comparison between sequences and the computational structure of RNA-dependent RNA polymerases from CHIKV, DENV, and ZIKV and the conserved sites to be considered for the design of an antiviral drug against the three viruses. We show that the sequential identity between consensus sequences from CHIKV and DENV is 8.1% and the similarity is 15.1%; the identity between CHIKV and ZIKV is 9.3%, and the similarity is 16.6%; and the identity between DENV and ZIKV is 68.6%, and the similarity is 79.2%. Nevertheless, the structural alignment shows that the root-mean-square deviation (RMSD) measurement value in general structure comparison between CHIKV RdRp and ZIKV RdRp was 1.248 Å, RMSD between CHIKV RdRp and DENV RdRp was 1.070 Å, and RMSD between ZIKV RdRp and DENV RdRp was 1.106 Å. Despite the low identity and similarity of CHIKV sequence with DENV and ZIKV, we show that A, B, C, and E motifs are structurally well conserved. These structural similarities offer a window into drug design against these arboviruses giving clues about critical target sites.
Keywords: Chikungunya; Dengue; Homology modeling; NS5-polymerase; Zika; nsP4.
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.