Photovoltaic panels can be colonized by a highly diverse microbial diversity, despite life-threatening conditions. Although they are distributed worldwide, the microorganisms living on their surfaces have never been profiled in tropical regions using 16S rRNA high-throughput sequencing and PICRUst metagenome prediction of functional content. In this work, we investigated photovoltaic panels from two cities in southeast Brazil, Sorocaba and Itatiba, using these bioinformatics approach. Results showed that, despite significant differences in microbial diversity (p < 0.001), the taxonomic profile was very similar for both photovoltaic panels, dominated mainly by Proteobacteria, Bacteroidota and lower amounts of Cyanobacteria phyla. A predominance of Hymenobacter and Methylobacterium-Methylorubrum was observed at the genus level. We identified a microbial common core composed of Hymenobacter, Deinococcus, Sphingomonas, Methylobacterium-Methylorubrum, Craurococcus-Caldovatus, Massilia, Noviherbaspirillum and 1174-901-12 sharing genera. Predicted metabolisms focused on specific genes associated to radiation and desiccation resistance and pigments, were detected in members of the common core and among the most abundant genera. Our results suggested that taxonomic and functional profiles investigated were consistent with the harsh environment that photovoltaic panels represent. Moreover, the presence of stress genes in the predicted functional content was a preliminary evidence that microbes living there are a possibly source of metabolites with biotechnological interest.
Keywords: arid environment; biofouling; microbial diversity; solar panel; stress-resistance; sun-exposed environment.
© The Author(s) 2021. Published by Oxford University Press on behalf of FEMS. All rights reserved. For permissions, please e-mail: [email protected].