Blue-Violet Emission with Near-Unity Photoluminescence Quantum Yield from Cu(I)-Doped Rb3InCl6 Single Crystals

J Phys Chem Lett. 2021 Aug 26;12(33):7928-7934. doi: 10.1021/acs.jpclett.1c01751. Epub 2021 Aug 13.

Abstract

Low-dimensional metal halides have attracted considerable attention due to their unique optoelectronic properties. In this study, we report a solid-state synthesis of air-stable all-inorganic Pb-free zero-dimensional (0D) Rb3InCl6 single crystals (SCs). By a heterovalent doping of Cu+ ions, the Rb3InCl6:Cu+ SCs featured an efficient blue-violet emission with a greatly enhanced photoluminescence (PL) quantum yield (95%) and an ultralong PL lifetime (13.95 μs). Combined with temperature-dependent PL and density functional theory calculations, we conclude that the efficient electronic isolation, enhanced exciton-phonon coupling, and electronic structure modulation after doping lead to bright blue-violet emission. Furthermore, the SCs exhibited excellent stability, maintaining 90% of the initial PL intensity after being stored in ambient conditions for more than two months. The results provide a new strategy for improving the optoelectronic properties of 0D all-inorganic metal halides, which is promising for potential light-emitting applications.