Covalent Triazine Framework as an Efficient Photocatalyst for Regeneration of NAD(P)H and Selective Oxidation of Organic Sulfide

Photochem Photobiol. 2022 Jan;98(1):150-159. doi: 10.1111/php.13504. Epub 2021 Aug 25.

Abstract

Covalent triazine frameworks (CTFs), belonging to the super-family of covalent organic frameworks, have attracted significant attention as a new type of photosensitizer due to the superb light-harvesting ability and efficient charge transfer originating from the large surface area. However, the wide optical band gap in CTFs, which is larger than 3.0 eV, hinders the efficient light harvesting in the visible range. To overcome this limitation, we developed the new type CTFs photocatalyst based on the donor-acceptor conjugation scheme by using melamine (M) and 2,6-diaminoanthraquinone (AQ) as monomeric units. The melamine-2,6-diaminoanthraquinone-based covalent triazine frameworks (M-AQ-CTFs) photocatalyst shows the excellent light-harvesting capacity with high molar extinction coefficient, and the suitable optical band gap involving the internal charge transfer character. Combination of M-AQ-CTFs and artificial photosynthetic system including the organometallic rhodium complex, acting as an electron mediator, exhibited the excellent photocatalytic efficiency for the regeneration of the nicotinamide cofactors such as NAD(P)H. In addition, this photocatalyst showed the high photocatalytic efficiency for the metal-free aerobic oxidation of sulfide. This study demonstrates the high potential of CTFs photocatalyst with the donor-acceptor conjugated scheme can be actively used for artificial photosynthesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Metal-Organic Frameworks*
  • NAD*
  • Oxidation-Reduction
  • Sulfides
  • Triazines

Substances

  • Metal-Organic Frameworks
  • Sulfides
  • Triazines
  • NAD