Multiple myeloma (MM) is incurable and the second most common hematologic malignancy in plasma cells. Multiple myeloma stem cell-like cells (MMSCs), a rare population of MM cells, are believed to be the major cause of drug resistance and high recurrence rates in patients with MM. Therefore, developing novel strategies to eradicate MMSCs may favor myeloma treatment. In this study, based on the drug repositioning strategy, we found that albendazole (ABZ), a broad-spectrum antiparasitic drug, selectively suppresses the proliferation of multiple myeloma cells in vitro and in vivo and decreases number of aldehyde dehydrogenase (ALDH)-positive MMSCs in MM. Furthermore, RNA-seq of MM cells after ABZ treatment revealed that inhibition of the nuclear factor kappa-B (NF-κB) pathway is a key mediator of ABZ against MM. Moreover, we demonstrated that ABZ can resensitize cells resistant to bortezomib and overcome MMSCs-induced bortezomib resistance by decreasing ALDH1+ MMSCs numbers. Our findings provide preclinical evidence for utilizing the previously known pharmacologically active drug albendazole for the treatment of multiple myeloma.
Keywords: Drug resistance; Multiple myeloma stem cell-like cells; Nuclear factor kappa-B pathway.
Copyright © 2021 Elsevier B.V. All rights reserved.