Targeting Wee1 kinase as a therapeutic approach in Hematological Malignancies

DNA Repair (Amst). 2021 Nov:107:103203. doi: 10.1016/j.dnarep.2021.103203. Epub 2021 Aug 8.

Abstract

Hematologic malignancies include various diseases that develop from hematopoietic stem cells of bone marrow or lymphatic organs. Currently, conventional DNA-damage-based chemotherapy drugs are approved as standard therapeutic regimens for these malignancies. Although many improvements have been made, patients with relapsed or refractory hematological malignancies have a poor prognosis. Therefore, novel and practical therapeutic approaches are required for the treatment of these diseases. Interestingly several studies have shown that targeting Wee1 kinase in the Hematological malignancies, including AML, ALL, CML, CLL, DLBCL, BL, MCL, etc., can be an effective therapeutic strategy. It plays an essential role in regulating the cell cycle process by abrogating the G2-M cell-cycle checkpoint, which provides time for DNA damage repair before mitotic entry. Consistently, Wee1 overexpression is observed in various Hematological malignancies. Also, in healthy normal cells, repairing DNA damages occurs due to G1-S checkpoint function; however, in the cancer cells, which have an impaired G1-S checkpoint, the damaged DNA repair process depends on the G2-M checkpoint function. Thus, Wee1 inhibition could be a promising target in the presence of DNA damage in order to potentiate multiple therapeutic drugs. This review summarized the potentials and challenges of Wee1 inhibition combined with other therapies as a novel effective therapeutic strategy in Hematological malignancies.

Keywords: Cancer; Hematologic malignancies; Leukemia; Lymphoma; Wee1 kinase.

Publication types

  • Review

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology
  • Antineoplastic Agents / therapeutic use
  • Cell Cycle Proteins* / antagonists & inhibitors
  • Cell Cycle Proteins* / metabolism
  • DNA Damage
  • DNA Repair
  • Hematologic Neoplasms* / drug therapy
  • Hematologic Neoplasms* / enzymology
  • Hematologic Neoplasms* / genetics
  • Hematologic Neoplasms* / metabolism
  • Humans
  • Molecular Targeted Therapy
  • Protein Kinase Inhibitors* / pharmacology
  • Protein Kinase Inhibitors* / therapeutic use
  • Protein-Tyrosine Kinases* / antagonists & inhibitors
  • Protein-Tyrosine Kinases* / metabolism

Substances

  • Protein-Tyrosine Kinases
  • WEE1 protein, human
  • Cell Cycle Proteins
  • Protein Kinase Inhibitors
  • Antineoplastic Agents