High-resolution time-series concentrations (CTS) are very important for the investigation of the biogeochemical processes of trace metals in the aquatic environment. However, the acquisition of CTS of trace metals in water is still challenging because of the lack of suitable samplers. In this study, an osmotic sampler coupled with air segment injection and preservative addition was employed for time-series sampling of trace metals in surface waters. In the sampler, water sampling and preservative adding are both driven by osmotic pumps (OPs), while air segment injection is accomplished by a timer-controlled micro diaphragm pump. During deployment, the sampling OP continuously draws water through a filter and stores it in a narrow-bore coil. Simultaneously, a preservative OP slowly pushes 30% HNO3 (v/v) into the collected sample for in situ preservation. Periodically, the micro diaphragm pump injects air into the continuous water stream to divide it into water segments, enabling accurate time-stamping. After retrieval, the time-series samples were pumped out from the coil and re-collected to analyze the CTS of analytes. The sampler was deployed in river, reservoir, and marine waters for 26 h and one week to measure CTS of trace metals at time resolutions of 2 h and 12 h. Results showed that the recoveries of a preloaded standard mixture (1.0 μg/L) in all samplers ranged from 93.1% to 117.8%. The measured CTS of Cd, Co, Cr, Cu, Mn, and Ni in the waters only varied in small ranges. Accordingly, the measured CTS data from the sampler were consistent with the obtained concentrations from grab sampling. The relative percent differences between the measurements from two samplers were less than 37.4%. These results demonstrate the reliability and accuracy of the sampler for time-series sampling of the chosen trace metals in surface waters.
Keywords: Osmotic sampler; Passive sampling; Time-series; Trace metals; Water monitoring.
Copyright © 2021 Elsevier B.V. All rights reserved.