Background: Any abnormal space-occupying posterior fossa lesion may directly involve the vital structures like the brain stem, cranial nerves, cerebellum, vertebrobasilar artery, and venous sinuses, which makes the surgical approach and total excision very difficult. Hence for these reasons, precise evaluation of posterior fossa lesion with MRI is a must to visualize the vital structures, which helps in planning and safe surgery. Objective: This study aimed to evaluate the added value of diffusion-weighted imaging and magnetic resonance spectroscopy in the localization, extension, characterization, differentiation of various posterior fossa space-occupying lesions, and correlating with the histopathological result.
Materials and methods: This prospective study comprised of 40 patients who were suspected with posterior fossa space-occupying lesions on basis of clinical features or on CT scan. All patients were evaluated using conventional as well as newer MRI techniques using Siemens 1.5 Tesla MRI scanner (Siemens Medical System, Erlangen, Germany). Diffusion-weighted imaging (DWI) was done in all patients and magnetic resonance spectroscopy (MRS) was done in 27 patients. Based on the MRI findings, various posterior fossa lesions were classified as neoplastic or non-neoplastic. The neoplastic lesions were further classified as benign and malignant. The MRI findings were correlated with histopathological findings or follow-up.
Statistical analysis: Independent sample t-test was used to compare the mean apparent diffusion coefficient (ADC) values of various posterior fossa space-occupying lesions. Receiver operating characteristic (ROC) curve analysis was done to determine the optimal cut-off mean ADC values and choline/creatinine (Cho/cr) ratios for various benign and malignant posterior fossa tumors.
Results: Of 40 patients with posterior fossa lesions, 23 were males and 17 were females with a mean age of 34.67±1.93[SD] years. Metastases were the most common posterior fossa lesions in our study sample and found in seven patients (17.5%) followed by vestibular schwannomas and brainstem gliomas in five patients (12.5%) each, demyelinating lesion in four patients (10%), tubercular abscess in three patients (7.5%), hemangioblastoma, tuberculoma, arachnoid cyst, epidermoid cyst, pilocytic astrocytoma, low-grade glioma in two patients (5%) each, meningioma, medulloblastoma, pyogenic abscess and high-grade glioma in one patient (2.5%) each. The mean ADC value of benign tumors was higher than that of malignant tumors and this difference was found to be significant (p = 0.019). The cut-off ADC value 1.022 x 10-3mm2/s had a sensitivity of 78.6% and specificity of 66.7%. MRS played important role in differentiating neoplastic from non-neoplastic lesions and benign from malignant tumors. The cut-off Cho/cr ratio of 1.25 had a sensitivity of 66.7%, specificity of 85.7% to differentiate benign from malignant tumors.
Conclusion: Conventional MRI sequences able to diagnose most of the benign-appearing lesions of posterior fossa, however, adding advanced MRI sequences like diffusion-weighted imaging and MR spectroscopy helps us to differentiate and diagnose various posterior fossa lesions even closer to the actual histopathological diagnosis.
Keywords: diffusion-weighted imaging (dwi); magnetic resonance imaging (mri); magnetic resonance spectroscopy (mrs); posterior fossa; tumor.
Copyright © 2021, Tamilchelvan et al.