Emodin is a natural bioactive compound from traditional Chinese herbs that exerts anti-inflammatory, antioxidant, anticancer, hepatoprotective, and neuroprotective effects. However, the protective effects of emodin in acetaminophen (APAP)-induced hepatotoxicity are not clear. The present study examined the effects of emodin on APAP-induced hepatotoxicity and investigated the potential molecular mechanisms. C57BL/6 mice were pretreated with emodin (15 and 30 mg/kg) for 5 consecutive days and then given APAP (300 mg/kg) to establish an APAP-induced liver injury model. Mice were sacrificed to detect the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and albumin (ALB) and the liver tissue levels of glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD). Histological assessment, Western blotting, and ELISA were performed. Emodin pretreatment significantly reduced the levels of ALT, AST, and ALP; increased the levels of ALB; alleviated hepatocellular damage and apoptosis; attenuated the exhaustion of GSH and SOD and the accumulation of MDA; and increased the expression of antioxidative enzymes, including nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), and NAD(P)H quinone dehydrogenase 1 (NQO1). Emodin also inhibited the expression of NLRP3 and reduced the levels of pro-inflammatory factors, including interleukin-1 beta (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α). Emodin inhibited interferon (IFN)-α, cyclic GMP-AMP synthase (cGAS), and its downstream signaling effector stimulator of interferon genes (STING) expression to protect the liver against APAP-induced inflammatory responses and apoptosis. These results suggest that emodin protected hepatocytes from APAP-induced liver injury via the upregulation of the Nrf2-mediated antioxidative stress pathway, the inhibition of the NLRP3 inflammasome, and the downregulation of the cGAS-STING signaling pathway.
Keywords: acetaminophen;; cGAS-STING;; emodin;; hepatotoxicity;; inflammatory response..
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.