Introduction: The effect of vibrational force (VF) on accelerating orthodontic tooth movement depends on the ability to control the level of stimulation in terms of its peak load (PL) on the tooth. The objective of this study was to investigate the PL distribution on the teeth when a commercial VF device is used.
Methods: Finite element models of a human dentition from cone-beam computed tomography images of an anonymous subject and a commonly used commercial VF device were created. The device consists of a mouthpiece and a VF source. The maxilla and mandible bites on the mouthpiece with the VF applied to it. Interface elements were used between the teeth and the mouthpiece, allowing relative motion at the interfaces. The finite element model was validated experimentally. Static load and VF with 2 frequencies were used, and the PL distributions were calculated. The effects of mouthpiece materials and orthodontic appliances on the PL distribution were also investigated.
Results: The PL distribution of this kind of analyzed device is uneven under either static force or VF. Between the anterior and posterior segments, the anterior segment receives the most stimulations. The mouthpiece material affects the PL distribution. The appliance makes the PL more concentrated on the incisors. The VF frequencies tested have a negligible influence on both PL magnitude and distribution.
Conclusions: The device analyzed delivers different levels of stimulation to the teeth in both maxilla and mandible. Changing the material property of the mouthpiece alters the PL distribution.
Copyright © 2021 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.