175Yb is a radionuclide that can be generated by neutron capture on 174Yb and whose decay properties make it useful for developing therapeutic radiopharmaceuticals. As it happens with many of the emerging radionuclides for medical uses in recent years, its nuclear data were determined decades ago and are not thoroughly documented nor accurate enough for metrological purposes. The last documented reference for the 175Yb half-life value is 4.185(1) days and dates back to 1989, so a redetermination of the value was considered appropriate before standardization at the Institute of Radiation Physics (IRA, Lausanne, Switzerland) primary measurements laboratory. Three independent measurement methods were used to this purpose: reference ionization chamber (CIR, chambre d'ionization de référence), CeBr3 γ-ray detector with digital electronics and a second CeBr3 detector with analog electronics and single-channel analyzer (SCA) counting. The value obtained for the 175Yb half-life is 4.1615(30) days which shows a 0.56% relative deviation to the last nuclear reference value (ENSDF 2004) and is supported with a detailed calculation of the associated uncertainty.
Keywords: (175)Yb; Digital electronics.; Half-life; Ionization chamber; Standardization.
Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved.