Mechanisms of ozone responses in sensitive and tolerant mungbean cultivars

Sci Total Environ. 2021 Dec 15:800:149550. doi: 10.1016/j.scitotenv.2021.149550. Epub 2021 Aug 13.

Abstract

Ozone (O 3) is one of the major air pollutants, with negative impacts on human health, vegetation and agricultural production. It affects plants by reducing green leaf area and leading to necrosis, lesions and chlorosis, resulting in yield loss. Four mungbean cultivars were used to study O 3 sensitivity under elevated O 3 concentrations in the range of 70-100 ppb in an O 3 open-top chamber during the growing season. Based on O 3 response mechanisms, we classified mungbean cultivars into two groups: (1) O 3 -sensitive cultivars (Chainat 3 and 4) and (2) O 3 -tolerant cultivars (Chainat 84-1-1 and Kampangsan 2). The most O 3 -sensitive cultivars (Chainat 4) had the highest visible injury symptoms and the lowest in plant biomass. This evidence was due to Chainat 4 had lower ascorbic acid, indole acetic biosynthesis protein, defence related protein related to antioxidant systems, attribute to higher H 2 O 2 accumulation and an increase in salicylic acid contents. In contrast to the most O 3 -tolerant cultivars (Chainat 84-1-1) which had higher ascorbic acid levels, an upregulation of defence related protein, especially ascorbic acid biosynthesis and regenerate, indole acetic acid and jasmonic acid biosynthesis protein resulting in balanced H 2 O 2 levels, lower salicylic acid accumulation and little visible injury under elevated O 3 concentrations. Therefore, we conclude that the increased abundance of indole acetic acid, antioxidant related proteins facilitating stomata physiology in O 3 -tolerant under O 3 stress. This is the first report of the responses of mungbean cultivars in Thailand to elevated O 3 concentrations, facilitating the selection of suitable cultivars and the biomonitoring of O 3 levels.

Keywords: Ascorbic acid; Indole acetic acid; Mungbean; Ozone; Salicylic acid.

MeSH terms

  • Air Pollutants* / toxicity
  • Biomass
  • Ozone* / toxicity
  • Plant Leaves
  • Vigna*

Substances

  • Air Pollutants
  • Ozone