Identifying a possible new target for diagnosis and treatment of postmenopausal osteoporosis through bioinformatics and clinical sample analysis

Ann Transl Med. 2021 Jul;9(14):1154. doi: 10.21037/atm-21-3098.

Abstract

Background: Postmenopausal osteoporosis, a common yet chronic systemic metabolic disease, has become a major public health problem due to life expectancy increasing around the world. The differentiation of mesenchymal stem cells (MSCs) into osteoblasts, and the differentiation of circulating monocyte cells into osteoclasts, play an important role in the balance of bone metabolism. However, when both undergo pathological changes, it can lead to abnormalities, resulting in osteoporosis. This study aims to explore a new biomarker for postmenopausal osteoporosis, thereby providing a new entry point for bioinformatic research into the clinical diagnosis and treatment of the disease.

Methods: Using the Gene Expression Omnibus (GEO) database, microarray analysis was conducted to identify differentially expressed genes in MSCs and monocytes in both postmenopausal osteoporosis patients and a healthy control group. The Database for Annotation, Visualization and Integrated Discovery (DAVID) database was used to analyze the function and enrichment of the selected genes, and a protein-protein interaction (PPI) network was constructed from the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) website and displayed in Cytoscape. To achieve the final results, module analysis of the PPI network was performed by using Molecular Complex Detection (MCODE).

Results: We identified 45 high-expression and 26 low-expression genes through the study, all of which underwent pathway enrichment analysis. This enrichment was observed in the cell cycle regulation, osteoclast differentiation, tumor necrosis factor (TNF) signaling pathway, and RNA transport. The top 10 hub genes of the PPI network were SF3B1, SRSF5, FUBP1, SRSF3, TIA1, KHSRP, LUC7L3, PNN, SRC, and ATRX. Comparing the MSCs and monocytes between the postmenopausal osteoporosis patients and the healthy control group, we noted that the expression of the above genes differed greatly.

Conclusions: Through bioinformatic analysis and clinical specimen validation, our study provides a new way for exploring the pathogenesis of postmenopausal osteoporosis. Most importantly, it suggests that the hub genes, SF3B1, SRSF5, FUBP1, KHSRP, and SRC, may become new diagnostic markers and therapeutic targets for diagnosing and treating postmenopausal osteoporosis in the future.

Keywords: Postmenopausal osteoporosis; bioinformatics; gene expression.