Objectives: To evaluate the value of the computer-aided diagnosis system, S-Detect (based on deep learning algorithm), in distinguishing benign and malignant breast masses and reducing unnecessary biopsy based on the experience of radiologists.
Methods: From February 2018 to March 2019, 266 breast masses in 192 women were included in our study. Ultrasound (US) examination, including S-Detect technique, was performed by the radiologist with about 10 years of clinical experience in breast US imaging. US images were analyzed by four other radiologists with different experience in breast imaging (radiologists 1, 2, 3, and 4 with 1, 4, 9, and 20 years, respectively) according to their clinical experience (with and without the results of S-Detect). Diagnostic capabilities and unnecessary biopsy of radiologists and radiologists combined with S-Detect were compared and analyzed.
Results: After referring to the results of S-Detect, the changes made by less experienced radiologists were greater than experienced radiologists (benign or malignant, 44 vs 22 vs 14 vs 2; unnecessary biopsy, 34 vs 25 vs 10 vs 5). When combined with S-Detect, less experienced radiologists showed significant improvement in accuracy, specificity, positive predictive value, negative predictive value, and area under curve (P < .05), but not for experienced radiologists (P > .05). Similarly, the unnecessary biopsy rate of less experienced radiologists decreased significantly (44.4% vs 32.7%, P = .006; 36.8% vs 28.2%, P = .033), but not for experienced radiologists (P > .05).
Conclusions: Less experienced radiologists rely more on S-Detect software. And S-Detect can be an effective decision-making tool for breast US, especially for less experienced radiologists.
Keywords: breast mass; computer-aided diagnosis; differential diagnosis; ultrasound.
© 2021 American Institute of Ultrasound in Medicine.