Paenibacillus elgii AC13 produces antimicrobial lipopeptides of agricultural and pharmaceutical importance. It secretes four cyclic lipopeptides named pelgipeptins, previously characterized in P. elgii B69. These lipopeptides result from the expression of a nonribosomal peptide gene cluster. P. elgii AC13 also produced two linear lipopeptides with ratios of [M + H] + 1105 and 1119 m/z. These compounds were previously observed in Paenibacillus sp. strain OSY-N, but due to purification difficulties, their characterization was executed using synthetically produced linear pelgipeptins. In the present study, purification was achieved from the supernatants of cultures from three complex media by high-performance liquid chromatography. The partial characterization of linear pelgipeptins revealed the similar antimicrobial activity and cytotoxicity of their synthetically produced counterparts, known as paenipeptins. Cyclic forms were highly stable to changes in pH, temperature, and organic extraction with n-butanol as shown by mass spectrometry (MALDI-TOF); therefore, these steps did not cause the hydrolysis of pelgipeptins. A low-activity thioesterase could also generate the linear isoforms observed; this enzyme catalyzes the cyclization process and is coded in the same gene cluster. Alternatively, the cyclic forms were hydrolyzed by an unknown protease produced during growth in the complex medium used in the present study. Although culture conditions are known to produce pelgipeptins with different yields and amino acid compositions, the occurrence of linear and cyclic forms simultaneously has not yet been reported. A mixture of cyclic and linear pelgipeptins presents a potential advantage of the higher antimicrobial activity of cyclic forms combined with the lower cytotoxicity of linear isoforms.
Keywords: Antimicrobial agent; Lipopeptides; MALDI-TOF; NRP isoforms; Paenibacillus elgii; Pelgipeptin.
© 2021. Sociedade Brasileira de Microbiologia.