Lentinula edodes (shiitake mushrooms) is heavily affected by the infection of Trichoderma atroviride, causing yield loss and decreases quality in shiitake mushrooms. The selection and breeding of fungal-resistant L. edodes species are an important approach to protecting L. edodes from T. atroviride infection. Herein, a highly resistant L. edodes strain (Y3334) and a susceptible strain (Y55) were obtained by using a resistance evaluation test. Transcriptome analyses and qRT-PCR detection showed that the expression level of LeTLP1 (LE01Gene05009) was strongly induced in response to T. atroviride infection in the resistant Y3334. Then, LeTLP1-silenced and LeTLP1-overexpression transformants were obtained. Overexpression of LeTLP1 resulted in resistance to T. atroviride. Compared with the parent strain Y3334, LeTLP1-silenced transformants had reduced resistance relative to T. atroviride. Additionally, the LeTLP1 protein (Y3334) exhibited significant antifungal activity against T. atroviride. These findings suggest that overexpression of LeTLP1 is a major mechanism for the resistance of L. edodes to T. atroviride. The molecular basis provides a theoretical basis for the breeding of resistant L. edodes strains and can eventually contribute to the mushroom cultivation industry and human health.
Keywords: LeTLP1; Lentinula edodes; Trichoderma atroviride; resistance mechanism.