High-pressure (HP) treatment could lead to several advantages when applied to fish and seafood since it would affect the extension of the shelf life of this highly perishable food. In this regard, this study aimed to evaluate the effect of high-pressure treatment (500 MPa for 2 min at a temperature of 4 °C) on changes in quality on two different kinds of fresh fish fillets (Salmo salar and Pleuronectes platessa). Specifically, physico-chemical (VOCs, untargeted metabolomics spectra, pH and color), microbiological (Enterobacteriaceae, Pseudomonas spp., mesophilic and psychrotrophic bacteria) and sensory traits were evaluated at different days of refrigerated storage. From the results obtained, it is possible to state that the high pressure significantly (p ≤ 0.05) reduced microbial growth for each investigated microorganism. Regarding the colorimetric coordinates, no remarkable effects on a* and b* indices were found, while a significant effect (p = 0.01) was observed on the colorimetric index L*, making the HP-treated samples lighter than their respective controls. The sensory analysis showed that for the odor attribute, the HP treatment seems to have had a stabilizing action during shelf-life. Moreover, the treated samples obtained a better score than the respective controls (p ≤ 0.05). With regards to texture and appearance attributes, the treatment seems to have had a significant (p ≤ 0.05) effect, making the treated samples more compact and opaque than controls, therefore resulting in the loss of the characteristics of raw fish for the treated samples. Moreover, from a chemical point of view, HP treatment prevents the development of volatile sulfides and delays the formation of histamine (p ≤ 0.05). Very interestingly, the metabolomic approach revealed novel dipeptide markers for the HP procedure.
Keywords: fish quality; fish shelf-life extension; high-pressure treatment; metabolomics analysis; microbiology; sensory traits.