Exsolved nanoparticle catalysts have recently attracted broad research interest as they simultaneously combine the features of catalytic activity and chemical stability in various applications of energy conversion and storage. As the internal mechanism of in-situ exsolution is of prime significance for the optimization of its strategy, comprehensive research focused on the behaviors of in-situ segregation for metal (Mn, Fe, Co, Ni, Cu, Ag, Pt and Au)-substituted CeO2 is reported using first-principles calculations. An interesting link between the behaviors of metal growth from the ceria host and their microelectronic reconfigurations was established to understand the inherent attribute of metal self-regeneration, where a stair-stepping charge difference served as the inner driving force existing along the exsolving pathway, and the weak metal-coordinate associations synergistically facilitate the ceria's in-situ growth. We hope that these new insights provide a microscopic insight into the physics of in-situ exsolution to gain a guideline for the design of nanoparticle socketed catalysts from bottom to top.
Keywords: doped ceria; in-situ exsolution mechanism; metal nanoparticle.