Differences in Pneumococcal and Haemophilus influenzae Natural Antibody Development in Papua New Guinean Children in the First Year of Life

Front Immunol. 2021 Aug 10:12:725244. doi: 10.3389/fimmu.2021.725244. eCollection 2021.

Abstract

Background: Development of vaccines to prevent disease and death from Streptococcus pneumoniae, and nontypeable Haemophilus influenzae (NTHi), the main pathogens that cause otitis media, pneumonia, meningitis and sepsis, are a global priority. Children living in low and lower-middle income settings are at the highest risk of contracting and dying from these diseases. Improved vaccines with broader coverage are required. Data on the natural development of antibodies to putative vaccine antigens, especially in high-risk settings, can inform the rational selection of the best antigens for vaccine development.

Methods: Serum IgG titres to four pneumococcal proteins (PspA1, PspA2, CbpA, and Ply) and five NTHi antigens (P4, P6, OMP26, rsPilA and ChimV4) were measured in sera collected from 101 Papua New Guinean children at 1, 4, 9, 10, 23 and 24 months of age using multiplexed bead-based immunoassays. Carriage density of S. pneumoniae and H. influenzae were assessed by quantitative PCR on genomic DNA extracted from nasopharyngeal swabs using species-specific primers and probes. All data were log-transformed for analysis using Student's unpaired t-tests with geometric mean titre (GMT) or density (GMD) calculated with 95% confidence intervals (CI).

Results: Serum -pneumococcal protein-specific IgG titres followed a "U" shaped pattern, with a decrease in presumably maternally-derived IgG titres between 1 and 4 months of age and returning to similar levels as those measured at 1 month of age by 24 months of age. In contrast, NTHi protein-specific IgG titres steadily increased with age. There was no correlation between antibody titres and carriage density for either pathogen.

Conclusion: This longitudinal study indicates that the waning of maternally- derived antibodies that is usually observed in infants, after infants does not occur for NTHi antigens in Papua New Guinean infants. Whether NTHi antigen IgG can be transferred maternally remains to be determined. Vaccines that are designed to specifically increase the presence of protective NTHi antibodies in the first few months of life may be most effective in reducing NTHi disease.

Clinical trial registration: https://clinicaltrials.gov/, identifier NCT01619462.

Keywords: Papua New Guinea; natural antibody; nontypeable Haemophilus influenzae (NTHi); pneumococcus; protein IgG; vaccines.

Publication types

  • Clinical Trial, Phase III
  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antibodies, Bacterial / blood*
  • Child, Preschool
  • Female
  • Haemophilus Infections / blood*
  • Haemophilus Infections / immunology
  • Haemophilus Infections / prevention & control
  • Haemophilus influenzae / growth & development
  • Haemophilus influenzae / immunology*
  • Humans
  • Immunoglobulin G / blood
  • Infant
  • Linear Models
  • Longitudinal Studies
  • Male
  • Papua New Guinea
  • Pneumococcal Infections / blood*
  • Pneumococcal Infections / immunology
  • Pneumococcal Infections / prevention & control
  • Pneumococcal Vaccines / administration & dosage
  • Species Specificity
  • Streptococcus pneumoniae / growth & development
  • Streptococcus pneumoniae / immunology*
  • Vaccine Development

Substances

  • Antibodies, Bacterial
  • Immunoglobulin G
  • Pneumococcal Vaccines

Associated data

  • ClinicalTrials.gov/NCT01619462