The Dynamics of Flower Development in Castanea sativa Mill

Plants (Basel). 2021 Jul 27;10(8):1538. doi: 10.3390/plants10081538.

Abstract

The sweet chestnut tree (Castanea sativa Mill.) is one of the most significant Mediterranean tree species, being an important natural resource for the wood and fruit industries. It is a monoecious species, presenting unisexual male catkins and bisexual catkins, with the latter having distinct male and female flowers. Despite the importance of the sweet chestnut tree, little is known regarding the molecular mechanisms involved in the determination of sexual organ identity. Thus, the study of how the different flowers of C. sativa develop is fundamental to understand the reproductive success of this species and the impact of flower phenology on its productivity. In this study, a C. sativa de novo transcriptome was assembled and the homologous genes to those of the ABCDE model for floral organ identity were identified. Expression analysis showed that the C. sativa B- and C-class genes are differentially expressed in the male flowers and female flowers. Yeast two-hybrid analysis also suggested that changes in the canonical ABCDE protein-protein interactions may underlie the mechanisms necessary to the development of separate male and female flowers, as reported for the monoecious Fagaceae Quercus suber. The results here depicted constitute a step towards the understanding of the molecular mechanisms involved in unisexual flower development in C. sativa, also suggesting that the ABCDE model for flower organ identity may be molecularly conserved in the predominantly monoecious Fagaceae family.

Keywords: ABCDE model; Castanea sativa; Fagaceae; homeotic genes; monoecy; unisexuality.