While ubiquitous natural organic matters (NOMs) are capable of enhancing zero-valent iron (ZVI) performance under aerobic conditions, there is limited understanding of how the properties of NOMs affect the reactivity of ZVI towards contaminants removal. Here, the corresponding activity of ZVI under aerobic conditions was investigated in the presence of humic acid (HA), fulvic acid (FA), bovine serum albumin (BSA). It was found that three models of NOMs were all effective in promoting diatrizoate (DTA) reduction via depassivating ZVI. Interestingly, fast adsorption of NOM onto ZVI surface initially caused inconspicuous impact or visible inhibition on hydrophilic DTA reduction depending on their hydrophobicity. However, subsequent exposure of more reactive sites with high hydrophilicity arising from the detachment of surfaced NOM-associated iron oxide finally contributed to the enhanced consumption of Fe0 with the ability: HA > FA ≈ BSA, and 1-2 times increase in DTA removal kinetic rate following the order: HA > FA > BSA. It further revealed that there were two key factors in determining DTA removal under aerobic conditions, including the ability of NOMs to boost Fe0 consumption as contributed by their aromaticity degree and amino groups, and the hydrophobicity of NOMs to initially affect the property of ZVI surfaces.
Keywords: Aerobic conditions; Diatrizoate; Hydrophobicity; Natural organic matters; Zero-valent iron.
Copyright © 2021 Elsevier B.V. All rights reserved.