Anterior knee pain independently alters landing and jumping biomechanics

Clin Biomech (Bristol). 2021 Oct:89:105458. doi: 10.1016/j.clinbiomech.2021.105458. Epub 2021 Aug 20.

Abstract

Background Biomechanical effects of anterior knee pain are difficult to distinguish from effects of other factors also related to knee injury (e.g., joint effusion). The purpose of this study was to evaluate independent effects of anterior knee pain on landing and jumping biomechanics. Methods Thirteen healthy participants performed a land and jump movement task, under three experimental conditions (pre-pain, pain, and post-pain), during one data collection session. One 1-ml injection of hypertonic saline into the infrapatellar fat pad was used to induce experimental anterior knee pain during the pain condition. Participant-perceived anterior knee pain was measured every 2 min throughout data collection. Landing and jumping biomechanics were measured and compared between the experimental conditions using a functional statistical approach. Findings The aforementioned injection increased mean participant-perceived anterior knee pain, from zero during the pre-pain condition to 2.6 ± 0.71 cm during the pain condition. Vertical ground reaction force, knee flexion angle, and internal knee extension moment decreased by approximately 0.100 body weights, 3°, and 0.010 Nm/body weight × body height, respectively, between the pre-pain and pain conditions. Conversely, hip flexion angle and internal hip extension moment increased by approximately 3° and 0.006 Nm/body weight × body height, respectively, between the pre-pain and pain conditions. Several biomechanical changes persisted after anterior knee pain abatement (the post-pain condition). Interpretation Anterior knee pain alters landing and jumping biomechanics, independent of other injury-related factors. These altered biomechanics likely change knee joint loading patterns and might increase risk for chronic knee joint injury and/or pathology.

Keywords: Experimental anterior knee pain; Ground reaction force; Hip; Joint kinematics; Joint kinetics; Knee.

MeSH terms

  • Anterior Cruciate Ligament Injuries*
  • Biomechanical Phenomena
  • Humans
  • Knee
  • Knee Joint
  • Pain