A stable lanthanum-based metal-organic framework as fluorescent sensor for detecting TNP and Fe3+ with hyper-sensitivity and ultra-selectivity

Spectrochim Acta A Mol Biomol Spectrosc. 2022 Jan 5:264:120276. doi: 10.1016/j.saa.2021.120276. Epub 2021 Aug 19.

Abstract

A new Lanthanum-based luminescent metal-organic framework, {[La(H2O)4(HL)]·H2O} (1), has been successfully synthesized by employing 3,3',5,5'-azodioxybenzenetetracarboxylic acid (H4L) as a rigid organic linker through the solvothermal reactions. 1 exhibits a two-dimensional (2D) layered structure and a three-dimensional (3D) supramolecular structure is formed by hydrogen bonds between the layers. Stability studies indicate that 1 has good chemical stability and thermostability. Meanwhile, the Ksv values for TNP is 4.61 × 104 M-1 with the LOD of 4.13 × 10-6 M and the Ksv value for Fe3+ is 1.22 × 104 M-1 with the LOD of 1.72 × 10-5 M, respectively, which demonstrated that 1 exhibits high sensitivity and excellent selectivity for the detection of TNP and Fe3+via fluorescence quenching. Significantly, 1 shows high regenerability after five recycling progress for sensing Fe3+. The possible mechanisms associated with the luminescent quenching are discussed in detail through some relevant experiments and tests, as well as the DFT calculations. Based on the above excellent properties of 1, it will have extremely potential to be used as a dual functional sensor for both detecting TNP and Fe3+ in aqueous solution, simultaneously.

Keywords: Crystal structure; Fe(3+); Fluorescent sensor; Metal-organic framework; TNP.