Background: The COVID-19 pandemic has demonstrated the possibility of severe ventilator shortages in the near future.
Objective: We aimed to develop an acute shortage ventilator.
Methods: The ventilator was designed to mechanically compress a self-inflating bag resuscitator, using a modified ventilator patient circuit, which is controlled by a microcontroller and an optional laptop. It was designed to operate in both volume-controlled mode and pressure-controlled assist modes. We tested the ventilator in 4 modes using an artificial lung while measuring the volume, flow, and pressure delivered over time by the ventilator.
Results: The ventilator was successful in reaching the desired tidal volume and respiratory rates specified in national emergency use resuscitator system guidelines. The ventilator responded to simulated spontaneous breathing.
Conclusions: The key design goals were achieved. We developed a simple device with high performance for short-term use, made primarily from common hospital parts and generally available nonmedical components to avoid any compatibility or safety issues with the patient, and at low cost, with a unit cost per ventilator is less than $400 US excluding the patient circuit parts, that can be easily manufactured.
Keywords: COVID-19; ICU; cost; critical care; engineering; equipment; intensive care; intensive care unit; medical device; medicine; performance; short-term; shortage; ventilator.
©Daniel S Akerib, Andrew Ames, Martin Breidenbach, Michael Bressack, Pieter A Breur, Eric Charles, David M Gaba, Ryan Herbst, Christina M Ignarra, Steffen Luitz, Eric H Miller, Brian Mong, Tom A Shutt, Matthias Wittgen. Originally published in JMIR Biomedical Engineering (http://biomsedeng.jmir.org), 05.08.2021.