Room-temperature sodium-sulfur (RT Na-S) batteries are highly desirable for a sustainable large-scale energy-storage system due to their high energy density and low cost. Nevertheless, practical applications of RT Na-S batteries are still prevented by the shuttle effect of sodium polysulfides (NaPS), slow reaction kinetics of S, and incomplete conversion process of NaPS. Here, Mo2 N-W2 N heterostructures embedded in a spherical carbon superstructure (Mo2 N-W2 N@PC) are designed to efficiently suppress the "polysulfide shuttle" and promote NaPS redox reactions. The designed Mo2 N-W2 N@PC heterostructure with abundant heterointerfaces, high conductivity, and porosity can facilitate electron/ion diffusion and provide high catalytic activity for efficient NaPS conversion. The obtained Na-S battery delivers high reversible capacity with superior long-term cyclability (517 mAh g-1 at 1 A g-1 after 400 cycles) and unprecedented rate capability (417 mAh g-1 at 2 A g-1 ). Furthermore, the electrocatalysis mechanism is revealed by combining in situ X-ray diffraction (XRD), ex situ X-ray photoelectron spectroscopy (XPS), UV-vis spectra, and precipitation experiments. This work demonstrates a novel heterostructure design strategy that enables high-performance Na-S batteries.
Keywords: Mo 2N-W 2N heterostructure; S cathodes; electrocatalysis; room-temperature sodium-sulfur batteries.
© 2021 Wiley-VCH GmbH.