(NHC)Si═C═N-R: A Two-Coordinated Si0-Isocyanide Compound as Si(NHC) Transfer Reagent

J Am Chem Soc. 2021 Sep 15;143(36):14780-14794. doi: 10.1021/jacs.1c06628. Epub 2021 Sep 1.

Abstract

Experimental and theoretical studies are reported of the first two-coordinated Si0-isocyanide compound (SIDipp)Si═C═N-ArMes (1: SIDipp (NHC) = C[N(Dipp)CH2]2, ArMes = 2,6-dimesitylphenyl), supported by an N-heterocyclic carbene (NHC). A Si atom economic two-step synthesis of 1 involves a 2e reduction of the isocyanide-stabilized silyliumylidene salt [SiBr(CNArMes)(SIDipp)][B(ArF)4] (2[B(ArF)4], ArF = B(C6H3-3,5-(CF3)2)4) with KC8. 2[B(ArF)4] was obtained from SiBr2(SIDipp) after bromide abstraction with an equimolar mixture of Na[B(ArF)4] and ArMesNC. Exact adherence to the stoichiometry is crucial in the latter reaction, since 2[B(ArF)4] reacts with SiBr2(SIDipp) via isocyanide exchange to afford the disilicon(II) salt [Si2Br3(SIDipp)2)][B(ArF)4] (3[B(ArF)4]), the reaction leading to an equilibrium that favors 3[B(ArF)4] (Keq(298 K) = 10.6, ΔH° = -10.6 kJ mol-1; ΔS° = -16.0 J mol-1 K-1). 3[B(ArF)4] was obtained selectively from the 2:1 reaction of SiBr2(SIDipp) with Na[B(ArF)4] and fully characterized. Detailed studies of 1 reveal an intriguing structure featuring a planar CNHC-Si-C-N skeleton with a V-shaped geometry at the dicoordinated Si0 center, a slightly bent Si═C═N core, a CNHC-Si-CCNR 3c-2e out of plane π-bond (HOMO), and an anticlinal conformation of the SIDipp and ArMes substituents leading to axial chirality and the presence of two enantiomers, (Ra)-1 and (Sa)-1. Compound 1 displays structural dynamics in solution, rapidly interconverting the enantiomers. The silacumulene 1 is a potent Si(SIDipp) transfer agent as demonstrated by the synthesis and full characterization of the NHC-supported germasilyne (Z)-(SIDipp)(Cl)Si═GeArMes (4) from 1 and Ge(ArMes)Cl.