Role of Aminoglycoside-Modifying Enzymes (AMEs) in Resistance to Aminoglycosides among Clinical Isolates of Pseudomonas aeruginosa in the North of Iran

Biomed Res Int. 2021 Aug 21:2021:7077344. doi: 10.1155/2021/7077344. eCollection 2021.

Abstract

In recent years, the prevalence of resistance to aminoglycosides among clinical isolates of Pseudomonas aeruginosa is increasing. The aim of this study was to investigate the role of aminoglycoside-modifying enzymes (AMEs) in resistance to aminoglycosides in clinical isolates of P. aeruginosa. The clinical isolates were collected from different hospitals. Disk agar diffusion test was used to determine the antimicrobial resistance pattern of the clinical isolates, and the minimum inhibitory concentration of aminoglycosides was detected by microbroth dilution method. The PCR was performed for discovery of aminoglycoside-modifying enzyme-encoding genes. Among 100 screened isolates, 43 (43%) isolates were resistant to at least one tested aminoglycosides. However, 13 (13%) isolates were resistant to all tested aminoglycosides and 37 isolates were detected as multidrug resistant (MDR). The resistance rates of P. aeruginosa isolates against tested antibiotics were as follows: ciprofloxacin (41%), piperacillin-tazobactam (12%), cefepime (32%), piperacillin (26%), and imipenem (31%). However, according to the MIC method, 13%, 32%, 33%, and 37% of the isolates were resistant to amikacin, gentamicin, tobramycin, and netilmicin, respectively. The PCR results showed that AAC(6')-Ib was the most commonly (26/43, 60.4%) identified AME-encoding gene followed by AAC(6')-IIa (41.86%), APH(3')-IIb (34.8%), ANT(3 )-Ia (18.6), ANT(2 )-Ia (13.95%), and APH(3 )-Ib (2.32%). However, APH(3')-Ib was not found in any of the studied isolates. The high prevalence of AME-encoding genes among aminoglycoside-resistant P. aeruginosa isolates in this area indicated the important role of AMEs in resistance to these antibiotics similar to most studies worldwide. Due to the transmission possibility of these genes between the Gram-negative bacteria, we need to control the prescription of aminoglycosides in hospitals.

MeSH terms

  • Aminoglycosides / chemistry
  • Aminoglycosides / pharmacology*
  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Drug Resistance, Bacterial
  • Female
  • Gram-Negative Bacteria / drug effects*
  • Humans
  • Iran / epidemiology
  • Male
  • Middle Aged
  • Pseudomonas Infections / drug therapy*
  • Pseudomonas Infections / epidemiology
  • Pseudomonas Infections / metabolism
  • Pseudomonas Infections / microbiology
  • Pseudomonas aeruginosa / drug effects*
  • Pseudomonas aeruginosa / isolation & purification
  • Pseudomonas aeruginosa / metabolism
  • beta-Lactamases / genetics
  • beta-Lactamases / metabolism

Substances

  • Aminoglycosides
  • Anti-Bacterial Agents
  • Bacterial Proteins
  • beta-Lactamases