The immune system is a key component of tumorigenesis, with the latter promoting the development of cancer, its progression and metastasis. In fact, abundant infiltration of tumor-associated macrophages (TAM), which are M2-like macrophages, has been associated with a poor outcome in most types of cancers. Here, we show that lactate produced by murine melanoma B16F10 cells induces an M2-like profile in cultured macrophages. Further, we demonstrate that clotrimazole (CTZ), an off-target anti-tumor drug, abolishes lactate effects on the activation of macrophages and induces the expression of M1-like markers. We show that clotrimazole has cytotoxic effects on tumor cells by negatively modulating PI3K, which inhibits glycolytic metabolism and leads to a diminishing lactate production by these cells. These effects are more pronounced in cancer cells exposed to conditioned media of M2-polarized macrophages. Moreover, clotrimazole inhibits tumor growth in a murine model of implanted melanoma, reduces lactate content in a tumor microenvironment and decreases vascular endothelial growth factor expression. Finally, clotrimazole drastically diminishes TAM infiltration in the tumors, thereby inducing M1 polarization. Collectively, these findings identify a new antitumor mechanism of clotrimazole by modulating the tumor microenvironment (TME), particularly the activation and viability of TAM.
Keywords: Cancer; Cytotoxicity; Inflammation; Lactate; PI3K pathway; TAMs.
Copyright © 2021 Elsevier B.V. All rights reserved.