Background and aims: NASH is a complicated disease characterized by hepatocyte steatosis, inflammation infiltration, and liver fibrosis. Accumulating evidence suggests that the innate immunity plays a key role in NASH progression. Here, we aimed to reveal the role of melanoma differentiation-associated gene 5 (MDA5, also known as Ifih1), a conventional innate immune regulator following viral infection, in the progression of NASH and investigate its underlying mechanism.
Approach and results: We first examined the expression of MDA5 and found that MDA5 was markedly down-regulated in the livers with NASH in human individuals and mice models. MDA5 overexpression significantly inhibits the free fatty acid-induced lipid accumulation and inflammation in hepatocyte in vitro, whereas MDA5 knockdown promotes hepatocyte lipotoxicity. Using hepatocyte-specific Mda5 gene knockout and transgenic mice, we found that diet-induced hepatic steatosis, inflammation, and liver fibrosis were markedly exacerbated by Mda5 deficiency but suppressed by Mda5 overexpression. Mechanistically, we found that the activation of apoptosis signal-regulating kinase 1 (ASK1)-mitogen-activated protein kinase pathway was significantly inhibited by MDA5 but enhanced by MDA5 deletion. We further validated that MDA5 directly interacted with ASK1 and suppressed its N-terminal dimerization. Importantly, blockage of ASK1 with adenovirus-expressing dominant negative ASK1 obviously reversed the lipid accumulation and ASK1 pathway activation when Mda5 was knocked out.
Conclusions: These data indicate that MDA5 is an essential suppressor in NASH. The findings support MDA5 as a regulator of ASK1 and a promising therapeutic target for NASH.
© 2021 American Association for the Study of Liver Diseases.