The signal intensity characteristics of normal bone marrow in diffusion weighted imaging at various menstrual status women

Eur J Radiol. 2021 Oct:143:109938. doi: 10.1016/j.ejrad.2021.109938. Epub 2021 Aug 28.

Abstract

Purpose: Diffuse hyperintensities of the bone marrow in whole-body diffusion-weighted (DW) imaging (DWI) have been encountered more frequently in females aged 21-50 compared to elder females or men. Therefore, we aimed to visually evaluate DWI among pre-, peri- and postmenopausal women and to verify whether it correlates also quantitatively with hormonal status.

Method: The prospective study was approved by our institutional review board and informed consent was obtained in a total of 70 healthy premenopausal, perimenopausal, and postmenopausal women aged 40-58 years from February 2017 to October 2017. The bone marrow DW imaging signal characteristics were visually evaluated in comparison to the erector spinae muscle. Imaging data were acquired using a 1.5 T MRI yielding signal intensity values from a DWI-pulse sequence (b-value of 800 s/mm2; apparent diffusion coefficient (ADC) maps from b-values of 0-800 s/mm2), and a T2 mapping sequence covering the L2-L4 lumbar vertebrae. Serous estradiol (E2), follicle stimulating hormone (FSH), and luteinizing hormone (LH) were measured through venous blood assay. The relationship of the mean DW signal intensity (SIDWI) with T2 values, female hormone level, and mean ADC were analyzed using Spearman's rho test.

Results: The proportion of diffuse DWI hyperintensities of the bone marrow was significantly higher in premenopausal (91% (21/23)) women compared to peri- (75% (18/24)) and postmenopausal (8% (2/23)) women. A positive correlation was observed for the mean SIDWI (median [interquartile range], 47.33 [30.14]) and mean T2 (mean ± SD, 121.01 ± 13.54) (r = 0.438, p < 0.001) as well as for the mean SIDWI and E2 (median [interquartile range], 52.45 [92.78]) (r = 0.407, p < 0.001). A negative correlation was observed for the mean SIDWI and serous FSH (median [interquartile range], 15.55 [42.08]) as well as for the mean SIDWI and serous LH (median [interquartile range], 6.96 [31.06]) (r = -0.557, p < 0.001; r = -0.535, p < 0.001; respectively), but no significant correlation was found for mean SIDWI and mean ADC (mean ± SD, 599.36 ± 82.70) (r = 0.099, p = 0.415). A negative correlation was also encountered for the mean T2 values and serous FSH (r = -0.339, p = 0.004) as well as for the mean T2 values and serous LH (r = -0.281, p = 0.018).

Conclusions: The mean SIDWI correlates positively with mean T2 and serous E2 values, while there's no significant correlation with mean ADC, indicating that T2 shine-through effects might interfere with bone marrow signaling on DW images. Knowledge of the bone marrow signal characteristics changing in DW images in close relationship with menstrual status is essential to correctly interpret DWI in clinical practice.

Keywords: Apparent diffusion coefficient; Bone marrow; Diffusion-weighted imaging; Estradiol; MRI; Menstrual status.

MeSH terms

  • Aged
  • Bone Marrow* / diagnostic imaging
  • Diffusion Magnetic Resonance Imaging*
  • Female
  • Humans
  • Lumbar Vertebrae
  • Magnetic Resonance Imaging
  • Male
  • Prospective Studies