Indole, as a typical N-heterocyclic aromatic pollutant, poses risks to living things; however, indole-biotransformation mechanisms remain under-discussed, especially those related to its downstream biotransformation. Here, we systematically investigated the characteristics of indole degradation by strain Cupriavidus sp. IDO. We found that Cupriavidus sp. IDO could utilize 25 to 150 mg/L indole within 40 h and identified three intermediates (2-oxindole, indigo, and isatin). Additionally, integrated genomics and proteomics analysis of the indole biotransformation mechanism in strain IDO revealed 317 proteins showing significant changes (262 upregulated and 55 downregulated) in the presence of indole. Among these, three clusters containing indole oxidoreductase, CoA-thioester ligase, and gentisate 1,2-oxidoreductase were identified as potentially responsible for upstream and downstream indole metabolism. Moreover, HPLC-MS and -omics analysis offered insight into the indole-degradation pathway in strain IDO. Furthermore, the indole oxidoreductase IndAB, which initiates indole degradation, was heterologously expressed in Escherichia coli BL21(DE3). Optimization by the response surface methodology resulted in a maximal production of 135.0 mg/L indigo by the recombination strains in tryptophan medium. This work enriches our understanding of the indole-biodegradation process and provides new insights into multiple indole-degradation pathways in natural environments.
Keywords: Biotransformation mechanism; Cupriavidus sp.; Genomics; Indole; Proteomics.
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.