Incorporating Glucose Variability into Glucose Forecasting Accuracy Assessment Using the New Glucose Variability Impact Index and the Prediction Consistency Index: An LSTM Case Example

J Diabetes Sci Technol. 2022 Jan;16(1):7-18. doi: 10.1177/19322968211042621. Epub 2021 Sep 7.

Abstract

Background: In this work, we developed glucose forecasting algorithms trained and evaluated on a large dataset of free-living people with type 1 diabetes (T1D) using closed-loop (CL) and sensor-augmented pump (SAP) therapies; and we demonstrate how glucose variability impacts accuracy. We introduce the glucose variability impact index (GVII) and the glucose prediction consistency index (GPCI) to assess the accuracy of prediction algorithms.

Methods: A long-short-term-memory (LSTM) neural network was designed to predict glucose up to 60 minutes in the future using continuous glucose measurements and insulin data collected from 175 people with T1D (41,318 days) and evaluated on 75 people (11,333 days) from the Tidepool Big Data Donation Dataset. LSTM was compared with two naïve forecasting algorithms as well as Ridge linear regression and a random forest using root-mean-square error (RMSE). Parkes error grid quantified clinical accuracy. Regression analysis was used to derive the GVII and GPCI.

Results: The LSTM had highest accuracy and best GVII and GPCI. RMSE for CL was 19.8 ± 3.2 and 33.2 ± 5.4 mg/dL for 30- and 60-minute prediction horizons, respectively. RMSE for SAP was 19.6 ± 3.8 and 33.1 ± 7.3 mg/dL for 30- and 60-minute prediction horizons, respectively; 99.6% and 97.6% of predictions were within zones A+B of the Parkes error grid at 30- and 60-minute prediction horizons, respectively. Glucose variability was strongly correlated with RMSE (R≥0.64, P < 0.001); GVII and GPCI demonstrated a means to compare algorithms across datasets with different glucose variability.

Conclusions: The LSTM model was accurate on a large real-world free-living dataset. Glucose variability should be considered when assessing prediction accuracy using indices such as GVII and GPCI.

Keywords: Type 1 diabetes; glucose prediction; glucose prediction consistency index; glucose variability; glucose variability impact index; long-short-term-memory neural network.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Blood Glucose
  • Blood Glucose Self-Monitoring
  • Diabetes Mellitus, Type 1* / drug therapy
  • Forecasting
  • Glucose*
  • Humans
  • Insulin Infusion Systems

Substances

  • Blood Glucose
  • Glucose