Dementia, including Alzheimer's disease, is a growing problem worldwide. Prevention or early detection of the disease or a prodromal cognitive decline is necessary. By means of our long-term follow-up 'Vogel study', we aim to predict the pathological cognitive decline of a German cohort (mean age was 73.9 ± 1.55 years at first visit) with three measurement time points within 6 years per participant. Especially in samples of the elderly and subjects with chronic or co-morbid diseases, dropouts are one of the biggest problems of long-term studies. In contrast to the large number of research articles conducted on the course of dementia, little research has been done on the completion of treatment. To ensure unbiased and reliable predictors of cognitive decline from study completers, our objective was to determine predictors of dropout. We conducted multivariate analyses of covariance and multinomial logistic regression analyses to compare and predict the subject's dropout behaviour at the second visit 3 years after baseline (full participation, partial participation and no participation/dropout) with neuropsychiatric, cognitive, blood and lifestyle variables. Lower performance in declarative memory, attention and visual-spatial processing predicted dropout rather than full participation. Lower performance in visual-spatial processing predicted partial participation as opposed to full participation. Furthermore, lower performance in mini-mental status examination predicted whether subjects dropped out or participated partially instead of full participation. Baseline cognitive parameters are associated with dropouts at follow-up with a loss of impaired participants. We expect a bias into a healthier sample over time.
Keywords: Alzheimer's disease; cognitive decline; dropout; elderly; mild cognitive impairment (MCI); prediction.
© 2021 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.