Natural organic matter is a major source of precursors of hazardous chlorinated disinfection byproducts (Cl-DBPs) formed during water treatment, but the majority of Cl-DBPs are still unidentified. In this study, we used a self-written halogen extraction code to identify halogen isotopic patterns in combination with the R package MFAssignR, to identify Cl-DBPs from Orbitrap mass spectra. One hundred and eighty-nine Cl-DBPs were detected during chlorination of a Suwannee River natural organic matter solution, and the structures of 20 of these compounds are reported for the first time. Kendrick mass defect analysis and structural identification confirmed that chlorinated carboxylic acids are common and likely to form during chlorination. A toxicity prediction using quantitative structure-activity relationship models indicated that most of the chlorinated carboxylic acids may be highly toxic. Our analytical strategy can identify Cl-DBPs accurately from complex mixtures and may also be applicable to the identification of other halogenated disinfection byproducts formed during water treatment.
Keywords: Chlorinated carboxylic acids; Chlorination; Cl-DBPs; Halogen extraction code; Orbitrap MS.
Copyright © 2021 Elsevier B.V. All rights reserved.