Environmental pollution has brought adverse socio-economic consequences. Organic pollutants and heavy metals are the main culprits of environmental pollution. It is of great importance to develop novel, simple, rapid, sensitive, and low-cost detection approaches for sensing trace pollutants in environmental samples. A lot of detection strategies which are based on varieties of nanomaterials have been developed for environmental analysis in past decades. In this review, we retrospect a variety of nanomaterials decorated with cyclodextrins (CDs), including carbon nanomaterials decorated with CDs, noble metal nanomaterials decorated with CDs and other nanomaterials decorated with CDs, and their application in environmental analysis. CDs is a type of ideal modifying molecules which could recognize targets, improve the solubility and dispersibility of corresponding functionalized materials, and enhance the detecting performance of designed sensors. CDs have been widely immobilized to carbon nanomaterials, noble metal nanomaterials, phosphorene (BP) nanocomposites, metal organic framework (MOF), and magnetic nanomaterials, and these nanocomposites have been utilized as the sensing elements for different target analytes. Immobilizing CDs on different nanomaterials could extremely expand the development of new sensing systems for environmental analysis based on these materials, greatly broaden the species of sensing targets, and apparently improve their sensing performance. Herein, the nanomaterials decorated with CDs, as sensing elements for environmental analysis, were reviewed including the types of nanomaterials decorated with CDs and their applications in various sensing strategies for environmental analysis. Finally, the perspectives of the nanomaterials decorated with CDs used as sensing elements were also discussed.
Keywords: Cyclodextrin; Environmental analysis; Nanomaterials; Pollutants; Sensors.
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.