Aim: We explored whether tumor-derived extracellular vesicles (EVs) could deliver long noncoding RNA (lncRNA) PART1 into macrophage to orchestrate macrophage polarization in the progression of hepatocellular carcinoma (HCC).
Method: The expression patterns of PART1, microRNA (miR)-372-3p and TLR4 were detected by RT-qPCR in the HCC tissues and HCC cells. PART1 was silenced or overexpressed in HCC cells to assess its effects on the HCC cell process. EVs were isolated from PART1-overexpressed HCC cells, and co-cultured with macrophages, and gain- and loss-of-function assays were implemented in macrophages to evaluate their role in macrophage polarization. Relationship among PART1, miR-372-3p, and TLR4 was evaluated. Effect of EV-PART1 on tumorigenicity in vivo was detected by subcutaneous tumorigenicity test in nude mice.
Result: PART1 and TLR4 were upregulated while miR-372-3p was downregulated in HCC tissues and cells. PART1 increased HCC cell proliferation, migration, invasion, and EMT. Mechanistically, PART1 bound to miR-372-3p to downregulate its expression, whereas TLR4 was negatively targeted by miR-372-3p in the macrophages. EVs containing PART1, TLR4 overexpression, or miR-372-3p inhibition induced M2 polarization of macrophages. Also, EVs containing PART1 promoted M2 polarization of macrophages and the occurrence of HCC by affecting miR-372-3p/TLR4 axis.
Conclusion: HCC cell-derived EVs might up-regulate TLR4 by inhibiting miR-372-3p via PART1 delivery to promote macrophage M2 polarization in HCC.
Keywords: Extracellular Vesicles; Hepatocellular carcinoma; Long noncoding RNA PART1; M2 polarization; Macrophage; TLR4; microRNA-372-3p.
Copyright © 2021. Published by Elsevier Ltd.