Stable Interface Chemistry and Multiple Ion Transport of Composite Electrolyte Contribute to Ultra-long Cycling Solid-State LiNi0.8 Co0.1 Mn0.1 O2 /Lithium Metal Batteries

Angew Chem Int Ed Engl. 2021 Nov 8;60(46):24668-24675. doi: 10.1002/anie.202110917. Epub 2021 Oct 7.

Abstract

Severe interfacial side reactions of polymer electrolyte with LiNi0.8 Co0.1 Mn0.1 O2 (NCM811) cathode and Li metal anode restrict the cycling performance of solid-state NCM811/Li batteries. Herein, we propose a chemically stable ceramic-polymer-anchored solvent composite electrolyte with high ionic conductivity of 6.0×10-4 S cm-1 , which enables the solid-state NCM811/Li batteries to cycle 1500 times. The Li1.4 Al0.4 Ti1.6 (PO4 )3 nanowires (LNs) can tightly anchor the essential N, N-dimethylformamide (DMF) in poly(vinylidene fluoride) (PVDF), greatly enhancing its electrochemical stability and suppressing the side reactions. We identify the ceramic-polymer-liquid multiple ion transport mechanism of the LNs-PVDF-DMF composite electrolyte by tracking the 6 Li and 7 Li substitution behavior via solid-state NMR. The stable interface chemistry and efficient ion transport of LNs-PVDF-DMF contribute to superior performances of the solid-state batteries at wide temperature range of -20-60 °C.

Keywords: composite electrolytes; interface chemistry; multiple ion transport; solid-state lithium metal batteries.