Plasmon-Mediated 2D/2D Phase Junction for Improved Photocatalytic Hydrogen Generation Activity

ACS Appl Mater Interfaces. 2021 Sep 22;13(37):44440-44450. doi: 10.1021/acsami.1c13074. Epub 2021 Sep 9.

Abstract

A phase junction fabricated by two crystalline phases of the same semiconductor is a promising photocatalyst with efficient charge transfer and separation. However, the weak light absorption and uncontrolled phase junction interface limit the generation and separation of photogenerated carriers. Herein, a two-dimensional (2D)/2D phase junction was prepared by growing orthorhombic WO3 ultrathin nanosheets on hexagonal WO3 nanosheets through a one-step hydrothermal method. The orthorhombic/hexagonal WO3 possesses large-area phase junction interfaces, rich reactive sites, and built-in electric field, which greatly accelerate the photogenerated charge separation and transfer. Thus, the orthorhombic/hexagonal WO3 displayed excellent photocatalytic hydrogen generation activity from water splitting under light irradiation (λ > 420 nm), which is 2.16 and 2.85 times those of orthorhombic and hexagonal WO3 phase components. Furthermore, Au nanoparticles (about 4.5 nm in diameter) were deposited on both orthorhombic and hexagonal WO3 nanosheets to form a plasmon-mediated phase junction. The hybrids exhibit prominent visible-light absorption and efficient charge transfer, leading to a further improved photocatalytic hydrogen generation activity. Further characterization studies demonstrate that superior photoactivity arises from the excellent visible-light-harvesting ability, appropriate band structure, and high-efficiency and multichannel transferring processes of photogenerated carriers.

Keywords: 2D materials; electron transfer; phase junction; photocatalysis; plasmon.