Peptide drugs have the advantages of target specificity and good drugability and have become one of the most increasingly important hotspots in new drug research in biomedical sciences. However, peptide drugs generally have low bioavailability and metabolic stability, and therefore, the modification of existing peptide drugs for the purpose of improving stability and retaining activity is of viable importance. It is known that glucagon is an effective therapy for treating severe hypoglycemia, but its short half-life prevents its wide therapeutic use. Herein, we report that combined unnatural residues and long fatty acid conjugation afford potent α/sulfono-γ-AApeptide hybrid analogues of Glucagon with enhanced stability and prolonged in vivo activity. This strategy could be adopted to develop stabilized analogues of other short-acting bioactive peptides.