In this study, we synthesized and characterized multiple resonance (MR) type blue thermally activated delayed fluorescence (TADF) emitters. Unlike many boron-based MR-TADF materials, the blue TADF emitters of this work had an asymmetric molecular structure with one boron, one oxygen, and one nitrogen. The aromatic units linked to the nitrogen were changed into diphenylamine, carbazole, dimethylacridine, and diphenylacridine to manage the light emission properties of the emitters. The TADF emitters exhibited a blue emission due to the weak electron-donating oxygen atom and the emission color was controlled by the aromatic unit connected to the nitrogen. The simple diphenylamine unit was effective in achieving real deep-blue emission for the BT2020 standard with a high external quantum efficiency (EQE), while the electron-rich nitrogen-based dimethylacridine and diphenylacridine accelerated the reverse intersystem crossing for high EQE and small EQE roll-off. Among the emitters, a diphenylamine-substituted emitter, 7-(tert-butyl)-9-phenyl-9H-5-oxa-9-aza-13b-boranaphtho[3,2,1-de]anthracene (B-O-dpa), showed a maximum external quantum efficiency of 16.3%, a small full width at half-maximum of 32 nm, and a real deep-blue color coordinate of (0.15, 0.05).
Keywords: TADF; blue OLEDs; multiple resonance effect; narrow emission.