Facilitated dissociation provides a mechanism by which high-affinity complexes can be rapidly disassembled. The negative feedback regulator CITED2 efficiently downregulates the hypoxic response by displacing the hypoxia-inducible transcription factor HIF-1α from the TAZ1 domain of the transcriptional coactivators CREB-binding protein (CBP) and p300. Displacement occurs by a facilitated dissociation mechanism involving a transient ternary intermediate formed by binding of the intrinsically disordered CITED2 activation domain to the TAZ1:HIF-1α complex. The short lifetime of the intermediate precludes straightforward structural investigations. To obtain insights into the molecular determinants of facilitated dissociation, we model the ternary intermediate by generating a fusion peptide composed of the primary CITED2 and HIF-1α binding motifs. X-ray crystallographic and NMR studies of the fusion peptide complex reveal TAZ1-mediated negative cooperativity that results in nearly mutually exclusive binding of specific CITED2 and HIF-1α interaction motifs, providing molecular-level insights into the allosteric switch that terminates the hypoxic response.
Keywords: allosteric switch; competitive binding; hypoxic response; intrinsically disordered protein; protein-protein interaction; transcriptional coactivator.
Copyright © 2021 Elsevier Ltd. All rights reserved.