The present investigation deals with removal of lead (Pb+2) ions from waste water using biosorbent prepared from seeds of Artocarpus heterophyllus (SBAh) and Syzygium cumini (SBSc). Biosorbents surface has been characterized through FT-IR spectroscopy to probe the presence of functional groups. Response surface methodology enabled optimized conditions (Pb+2 concentration 2 μg/mL, pH 5.8 and bioadsorbent dose 60 mg) resulted in Pb+2 removal ~96% for SBAh and ~93% for SBSc at agitation speed 300 rpm. The adsorption capacity has been found to be 4.93 mg/g for SBAh and 3.95 mg/g for SBSc after 70 min. At optimal experimental conditions, kinetics of biosorption was explained well by inter-particle diffusion model for SBAh (R2 = 0.99) whereas Elovich model best fitted for SBSc (R2 = 0.98). Further, both the biosorbents followed Temkin adsorption isotherm model.
Keywords: Artocarpus heterophyllus (SBAh); Bio-sorbent; Biochar; Lead removal; Seeds; Syzygium cumini (SBSc).
Crown Copyright © 2021. Published by Elsevier Ltd. All rights reserved.