Pressure-Enhanced Ferromagnetism in Layered CrSiTe3 Flakes

Nano Lett. 2021 Oct 13;21(19):7946-7952. doi: 10.1021/acs.nanolett.1c01994. Epub 2021 Sep 17.

Abstract

Despite recent advances in layered ferromagnets, ferromagnetic interactions in these materials are rather weak. Here, we report pressure-enhanced ferromagnetism in layered CrSiTe3 flakes revealed by high-pressure magnetic circular dichroism measurements. Below ∼3 GPa, CrSiTe3 undergoes a paramagnetic-to-ferromagnetic phase transition at ∼32 K, and the field-induced spin-flip in the ferromagnetic phase produces nearly zero hysteresis loops, demonstrating soft ferromagnetism. Above ∼4 GPa, a soft-to-hard ferromagnetic transition occurs, signaled by rectangular-shaped hysteresis loops with finite coercivity and remanent magnetization. Interestingly, as pressure increases, the Curie temperature and coercivity dramatically increase up to ∼138 K and 0.17 T at 7.8 GPa, respectively, in contrast to ∼36 K and 0.02 T at 4.6 GPa. It indicates a remarkable influence of pressure on exchange interactions, which is consistent with DFT calculations. The effective interaction between magnetic couplings and external pressure offers new opportunities in pursuit of high-temperature layered ferromagnets.

Keywords: 2D ferromagnetic materials; exchange interaction; high-pressure magnetic circular dichroism (MCD) spectroscopy; magnetization.